26 research outputs found

    Counterfactual Risk Minimization: Learning from Logged Bandit Feedback

    Full text link
    We develop a learning principle and an efficient algorithm for batch learning from logged bandit feedback. This learning setting is ubiquitous in online systems (e.g., ad placement, web search, recommendation), where an algorithm makes a prediction (e.g., ad ranking) for a given input (e.g., query) and observes bandit feedback (e.g., user clicks on presented ads). We first address the counterfactual nature of the learning problem through propensity scoring. Next, we prove generalization error bounds that account for the variance of the propensity-weighted empirical risk estimator. These constructive bounds give rise to the Counterfactual Risk Minimization (CRM) principle. We show how CRM can be used to derive a new learning method -- called Policy Optimizer for Exponential Models (POEM) -- for learning stochastic linear rules for structured output prediction. We present a decomposition of the POEM objective that enables efficient stochastic gradient optimization. POEM is evaluated on several multi-label classification problems showing substantially improved robustness and generalization performance compared to the state-of-the-art.Comment: 10 page

    Estimating Position Bias without Intrusive Interventions

    Full text link
    Presentation bias is one of the key challenges when learning from implicit feedback in search engines, as it confounds the relevance signal. While it was recently shown how counterfactual learning-to-rank (LTR) approaches \cite{Joachims/etal/17a} can provably overcome presentation bias when observation propensities are known, it remains to show how to effectively estimate these propensities. In this paper, we propose the first method for producing consistent propensity estimates without manual relevance judgments, disruptive interventions, or restrictive relevance modeling assumptions. First, we show how to harvest a specific type of intervention data from historic feedback logs of multiple different ranking functions, and show that this data is sufficient for consistent propensity estimation in the position-based model. Second, we propose a new extremum estimator that makes effective use of this data. In an empirical evaluation, we find that the new estimator provides superior propensity estimates in two real-world systems -- Arxiv Full-text Search and Google Drive Search. Beyond these two points, we find that the method is robust to a wide range of settings in simulation studies

    Unbiased Learning for the Causal Effect of Recommendation

    Full text link
    Increasing users' positive interactions, such as purchases or clicks, is an important objective of recommender systems. Recommenders typically aim to select items that users will interact with. If the recommended items are purchased, an increase in sales is expected. However, the items could have been purchased even without recommendation. Thus, we want to recommend items that results in purchases caused by recommendation. This can be formulated as a ranking problem in terms of the causal effect. Despite its importance, this problem has not been well explored in the related research. It is challenging because the ground truth of causal effect is unobservable, and estimating the causal effect is prone to the bias arising from currently deployed recommenders. This paper proposes an unbiased learning framework for the causal effect of recommendation. Based on the inverse propensity scoring technique, the proposed framework first constructs unbiased estimators for ranking metrics. Then, it conducts empirical risk minimization on the estimators with propensity capping, which reduces variance under finite training samples. Based on the framework, we develop an unbiased learning method for the causal effect extension of a ranking metric. We theoretically analyze the unbiasedness of the proposed method and empirically demonstrate that the proposed method outperforms other biased learning methods in various settings.Comment: accepted at RecSys 2020, updated several experiment

    The Self-Normalized Estimator for Counterfactual Learning

    Get PDF
    Abstract This paper identifies a severe problem of the counterfactual risk estimator typically used in batch learning from logged bandit feedback (BLBF), and proposes the use of an alternative estimator that avoids this problem. In the BLBF setting, the learner does not receive full-information feedback like in supervised learning, but observes feedback only for the actions taken by a historical policy. This makes BLBF algorithms particularly attractive for training online systems (e.g., ad placement, web search, recommendation) using their historical logs. The Counterfactual Risk Minimization (CRM) principle [1] offers a general recipe for designing BLBF algorithms. It requires a counterfactual risk estimator, and virtually all existing works on BLBF have focused on a particular unbiased estimator. We show that this conventional estimator suffers from a propensity overfitting problem when used for learning over complex hypothesis spaces. We propose to replace the risk estimator with a self-normalized estimator, showing that it neatly avoids this problem. This naturally gives rise to a new learning algorithm -Normalized Policy Optimizer for Exponential Models (Norm-POEM) -for structured output prediction using linear rules. We evaluate the empirical effectiveness of Norm-POEM on several multi-label classification problems, finding that it consistently outperforms the conventional estimator
    corecore